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Abstract

The thermocapillary or buoyancy!driven ~ow induced by a hot wire placed beneath the free surface of an horizontal
liquid layer is determined[ The temperature distribution induced by the wire is obtained in a conductive state by the
method of images[ The upper surface is assumed adiabatic\ whereas the lower surface is taken either conductive or
adiabatic[ Then\ the ~ow driven by the horizontal thermal gradient and the associated deformation of the free surface
are determined\ considering the action of either thermocapillary or buoyancy e}ects[ In the latter case\ a simpli_ed
expression of the temperature distribution is used in order to obtain analytical results[ Depending on whether ther!
mocapillary or buoyancy e}ects are considered\ the de~ection of the free surface above the wire is found to be either
concave or convex[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a height of the ~uid layer above which the horizontal
temperature distribution is approximated by US

A aspect ratio\ A � d:L
b distance between the wire and the bottom boundary
in non dimensional unit
bW distance between the wire and the bottom boundary]
bW � bd
Bo Bond number
Ca capillary number
d thickness of the plane horizontal ~uid layer
dW distance between the wire and the top free surface
F\ G piecewise!linear pro_les of temperature\ functions
of the y variable] F"y#\ G"y#
F0\ G0 integrals of F"y# and G"y#
` gravity acceleration
h height of the deformed free surface in non dimen!
sional unit
H height of the deformed free surface\ function of the
x variable] H"x# � h"x#d
L horizontal extent of the ~uid layer
LW length of the wire
Ma Marangoni number

� Corresponding author[

p pressure perturbation
P pressure
Pa atmospheric pressure
PE electrical power
Pr Prandtl number
Q strength of the heat source
r distance from the hot wire
rc radius of the wire
ri distance from a sink of heat image of the wire
Ra Rayleigh number
Re Reynolds number
t time
T temperature
Tb bottom boundary temperature
Tc surface temperature of the wire
Tf temperature distribution due to a heat source of
strength Q
Ti temperature distribution due to a sink of heat of
strength −Q
Tl temperature distribution due to a source and a sink
of heat symmetrical with respect of a plane conducting
boundary\ T0 � Tf¦Ti

T1 temperature distribution due to a source and a sink
of heat located at y � 12b
TW temperature of the lateral walls
u horizontal component of the velocity
US characteristic value of the horizontal velocity
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v vertical component of the velocity
VS characteristic value of the vertical velocity
W ratio of Rayleigh number to Marangoni number
x horizontal coordinate
y vertical coordinate
z complex number\ z � x¦iy[

Greek symbols
a thermal expansion coe.cient
g derivative of surface tension with respect to tem!
perature
h dynamical viscosity
u complex temperature
US surface temperature distribution
UW horizontal temperature distribution at the wire level
k thermal di}usivity
l coe.cient in the relationship between US and UW

m coe.cient in the relationship between h and US

m0\ m1 coe.cients in the expression of the ~ux con!
servation condition
n kinematic viscosity
r ~uid density
s surface tension
x thermal conductivity
c streamfunction[

0[ Introduction

Flows induced by localized heat sources arise in many
technological applications and several con_gurations
have already been studied both experimentally and theor!
etically[ In this contribution\ we are interested in ~ows
occurring in horizontal liquid layers and driven either by
surface tension e}ects acting on the upper free surface
of the ~uid layer or by buoyancy e}ects[ In our case\
temperature variations are ensured by the presence of a
hot wire underneath the free surface[ We are primarily
concerned with the determination of the temperature dis!
tribution in the ~uid induced by the wire\ the associated
~ow and the deformation of the free surface above the
wire[ Our analysis is motivated by recent experimental
results obtained when the liquid is placed in rectangular
vessels and heated by an electric wire parallel to either the
short sides or the long sides of the rectangular horizontal
cross!section[ We shall refer to a _rst set of experiments
ð0\ 1Ł designed to study temporal chaos and where the
wire has a short extent[ Another experimental team ð2\ 3Ł
has used a long wire and it was shown that the primary
~ow undergoes a transition towards unstable modes
which were identi_ed as traveling waves propagating
along the wire[ According to the distance between the
wire and the free surface\ the spatial properties of these
waves vary[ When the wire is located at a small distance
from the surface\ there are two waves traveling in
opposite directions while for larger immersion lengths

and near the threshold of instability there is a unique
wave traveling from one side to the opposite of the con!
tainer[

Before understanding the instability mechanism\ we
shall _rst focus on the nature of the primary ~ow[ Flows
induced by a linear source of heat have received attention
in the past mainly when the motion is allowed to develop
in in_nite or semi!in_nite medium[ This has led to the
theory of plumes where progress in the knowledge of
these systems resulted from similarity analyses ð4Ł[ Much
less is known when the ~ow is con_ned between hori!
zontal boundaries where former results obtained in this
geometry considered a source of heat external to the ~uid[
The analysis of Pimputkar and Ostrach ð5Ł for transient
thermocapillary ~ow is based on a thin liquid layer
approximation[ Numerical results were obtained by these
authors for a _xed Gaussian surface temperature dis!
tribution[ Later on\ Hitt and Smith ð6Ł emphasize on the
constant change in the free!surface temperature as the
height of liquid thins and they have included this coupling
when considering radiation!driven thermocapillary
~ows\ the radiative heating being induced by an external
in_nite cylindrical heater located above the free surface[
Despite some similarities with the thermocapillary ~ows
considered in Refs 5 and 6\ our motivations are di}erent
and in particular we are not concerned with strong inter!
facial deformations that can lead to the breaking of the
liquid layers as allowed in Refs 5 and 6[ In our model\
the deformations are small enough for the hot wire to
always be submerged in the liquid[ Moreover\ one cannot
exclude that under the experimental conditions reported
in Refs 2 and 3\ the ~ow is driven by buoyancy as well as
by thermocapillarity since the height of ~uid above the
wire can be varied\ ranging from 0Ð3 mm\ while the height
of ~uid below the wire is _xed and equal to 09 mm[ The
particular con_guration corresponding to heating from
a line source of heat located on the bottom plate was
never reached in Refs 2 and 3\ contrary to what happens
in other experiments ð7\ 8Ł specially devoted to this
geometry[ In these latter cases the ~ow is constituted of
an ascending buoyant plume which is de~ected hori!
zontally by the free surface and the interfacial defor!
mations result in a straight bump above the heat source[
On the contrary\ when thermocapillary e}ects are domi!
nant\ the ~uid is drawn away from the hot regions which
result in a depression of the interface in these regions[

1[ Formulation

Consider an in_nite horizontal liquid layer\ that is
initially at the uniform thickness d[ The ~uid is bounded
below by a rigid\ isothermal plate maintained at tem!
perature Tb\ and above by a thermally insulated free
surface[ It is assumed that the physical properties of the
~uid such as kinematic viscosity n\ thermal conductivity
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x and di}usivity k are constant and until Section 4 the
density r is also assumed constant[ The liquid free surface
has a surface tension s whose variations are due to a
linear dependence on temperature

s � s9−g"T−Tb#

where g � −ds:dT is positive and s9 is a reference value[
The liquid is subjected to Joule heating from an electric
wire immersed horizontally in the ~uid at a height\
bW � bd "9 ³ b ³ 0#\ from the bottom plate as shown in
Fig[ 0[ If the radius of the wire is assumed small compared
to the height bw\ it can be imagined that the temperature
and heat ~ow around it are produced by a line source of
heat of strength Q\ located on the centre of the wire\
creating at a distance r a thermal gradient
"1T:1r# � −"Q:1pxr#[ Assuming an in_nite extent of the
wire along the direction perpendicular to the "Ox\ Oy#
plane\ it is expected that temperature gradients will give
rise to a two!dimensional ~uid motion in the "Ox\ Oy#
plane\ governed by the equations

1xu¦ 1yv � 9 "0a#

1tu¦u 1xu¦v 1yu � −
0
r

1xP¦n"1xxu¦1yyu# "0b#

1tv¦u 1xv¦v1yv � −
0
r

1yP¦n"1xxv¦ 1yyv#−` "0c#

1tT¦u 1xT¦v 1yT � k"1xxT¦ 1yyT# "0d#

where u and v are the velocity components in x and y\
and P is the pressure[ The boundary conditions are on
the bottom plate

u � v � 9\ T � 9 at y � 9

and on the slightly deformed free surface assumed at rest

v � u 1xH 1h 1yv−P � s 1xxH−Pa

h 1yu � −g 1xT 1yT � 1xT 1xH 7 at y � H"x#\

H"x# : d when x : 2�

Fig[ 0[ Geometry of the problem[

with h � nr\ being the dynamical viscosity and Pa the
atmospheric pressure[

The temperatures being scaled with Q:1px and the
lengths with d\ it comes from the balance of tangential
stress that the characteristic value of the velocity in our
problem is

UÞs �
g

h

Q
1px

[

Thus\ in non dimensional form\ equation "0d# can be
rewritten

Ma"1tT¦u 1xT¦v 1yT# � 1xxT¦1yyT

with the Marangoni number de_ned as

Ma �
UÞsd
k

[

The ~uid used in the experiments that have motivated
this study is a silicon oil having a Prandtl number
Pr � 024\ the numerical values of its physical properties
can be found in Ref[ 1[ In the experiments reported in
Ref[ 2 the length of the wire is Lw � 59 cm and the control
parameter is the electrical power PE\ which is related to
Q by PE � QLW[ Thus\ an estimation of the experimental
Marangoni number leads to Maex � 099PEd where PE\ is
expressed in Watts and d\ the distance is expressed in
millimeter[ The value of PE never exceeds 01 W to avoid
deformation of the wire and boiling of the silicon oil[ It
appears that the experimental results are not very sen!
sitive to the total height of ~uid d\ but rather strongly
depend on the distance between the wire and the free
surface that ranges from dW � 9[7Ð3 mm[ When ther!
mocapillary e}ects are dominant\ that is for dW ³ 1 mm\
it has been shown in Ref[ 2 that the primary ~ow remains
stable for values of PEdW ³ 3 W mm[ Thus\ at the
threshold of instability the convective terms in equation
"0d# cannot be neglected\ and once the threshold is
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exceeded they become more and more important so that
the di}usive terms can be neglected and the temperature
ultimately evolves through the advection equation

1tT¦u 1xT¦v 1yT � 9[

This assumption\ together with a low value of the
Reynolds number\ has been used recently to derive a two!
dimensional model for thermal or solutal Marangoni
convection ð09Ł[ According to this approach\ the velocity
_eld is derived from the Stokes equation and only
depends on the initial surface temperature distribution
that is supposed to be known[ Di}erent temperature
_elds have been considered\ the simpler cases being rep!
resented by Dirac or trigonometric function[ In the pre!
sent case\ the temperature distribution due to the hot
wire is not known and has _rst to be determined[ This will
be done assuming the ~uid is at rest with the temperature
variations in both the x and the y directions satisfying
the conduction equation

1xxT¦ 1yyT � 9[

This approach that consists in determining the tem!
perature distribution in the conductive regime and then
the ~ow induced by thermal gradients has already been
used by Yu and Nansteel ð00Ł who addressed the problem
of buoyancy!induced Stokes ~ow in a sectorial region[

In the next section\ after assuming a plane interface at
y � d\ we shall determine the temperature distribution
due to the hot wire as if the ~uid was at rest[ Then\
in Section 3 we shall deduce the velocity _eld and the
interfacial deformations when only thermocapillary
e}ects are taken into account[ In Section 4\ we will show
how the present formulation must be modi_ed to describe
the ~ow driven by buoyancy e}ects[ Finally\ the coupling
of buoyancy and thermocapillarity will be considered in
Section 5[

2[ Temperature distribution

Let us _rst recall that if a wire of radius rc is embedded
in an in_nite medium\ the temperature distribution at a
distance\ r\ from the centre of the wire would be ð01Ł

Tf � Tc−
Q

1px
ln

r
rc

\ "1#

where Q is the Joulean heat released per unit length of
the wire\ and Tc is the wire surface temperature[ The next
step in view of obtaining the temperature distribution
created by a line source of heat embedded in a medium
con_ned between two horizontal boundaries\ is to con!
sider a semi!in_nite medium bounded at y � 9 by an
isothermal surface maintained at the temperature Tb[ The
wire being located at y � bw\ the problem is solved by the
method of images which consists in supposing an image
of the wire to exist\ symmetrical to the plane y � 9[ The

image located at y � −bW is a sink of heat\ of strength
−Q and of surface temperature −Tc[

Corresponding to equation "1#\ the temperature dis!
tribution produced by the sink at a distance\ ri\ from its
centre is

Ti � −Tc¦
Q

1px
ln

ri

rc

[ "2#

The temperature distribution at a point of coordinates
"x\ y# is the superposition of the two contributions "1#
and "2#

T � Tf¦Ti �
Q

1px
ln

ri

r
"3#

where

r1 � x1¦"y−b#1 and r1
i � x1¦"y¦b#1

are now non dimensional variables\ the lengths being
scaled with d[ Substitution of the above expressions into
equation "3# yields

T 0 T0 �
Q

3px
ln

x1¦"y¦b#1

x1¦"y−b#1
"4#

where T0 represents the excess temperature over the _xed
bottom temperature Tb[

The formula "4# is no longer true when a thermally
insulated top boundary is present in the system at y � 0[
To satisfy the prescribed top boundary condition
1T:1y � 9\ one can once again apply the method of
images and consider images\ symmetrical to the plane
y � 0\ of the source at y � b and of the sink at y � −b[
Their images are respectively a source of heat located at
y � 1−b and a sink at y � 1¦b[ Taking into account
this couple of source and sink leads to a new contribution
for the temperature

T1 �
Q

3hx
ln

x1¦"y−1−b#1

x1¦"y−1¦b#1
[ "5#

Superposition of the formulas "4# and "5# yields an
expression for the temperature distribution

T0T0¦T1

which allows satisfaction of 1T:1y � 9\ at y � 0\ but not
T � 9 at y � 9[ Therefore\ to satisfy simultaneously the
thermal boundary conditions on the top and bottom
plates it is necessary to introduce an in_nite number of
sources and sinks which are distributed by doing alter!
nately an antisymmetry with respect to the plane y � 9\
and a symmetry with respect to the plane y � 0[ This
gives rise to an in_nite row of sources and sinks located\
respectively\ at

y � b\ 21−b\ 23¦b\ [ [ [ \ 21n¦"−0#nb\ [ [ [

for the sources of strength Q
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and

y � −b\ 21¦b\ 23−b\ [ [ [ \ 21n−"−0#nb\ [ [ [

for the sinks of strength −Q[

To derive the temperature distribution due to this in_nite
row of sources and sinks it is convenient to introduce the
complex variable z � x¦iy and the function
u"z# � T¦i TÞ[

Expression "4# for T is recovered by taking the real
part of

u"z# � −
Q

1px
ðln"z−ib#− ln"z¦ib#Ł[ "6#

Generalization to the in_nite row of sources and sinks
we are considering\ yields

u"z# � −
Q

1px
s
�

n�9

ln "z−ið21n¦"−0#nŁ#

− ln "z−ið21n−"−0#nbŁ#[
Summation of the series is obtained after derivation of
the above expression in which we recognize the expansion
ð02Ł

ch kp:1
sh kp

�
0
p 0

0
k

−
1k

11−k1
¦

1k

31¦k1
−

1k

51¦k1
¦ = = =1

that appears a _rst time with k � z−ib\ and the second
time with k � z¦ib[ Thus

du

dz
� −

Q
1x 0

ch"z−ib#p:1
sh"z−ib#p

−
ch"z¦ib#p:1
sh"z¦ib#p 1

and

u"z# � −
Q

1px
ln 0

th"z−ib#p:3
th"z¦ib#p:31[ "7#

The temperature distribution T"x\ y# is the real part of
the above expression[ The isothermal lines have been
drawn in Fig[ 1 for three di}erent values of b[

Since we are interested in thermocapillary!driven ~ow\
we are mainly concerned with the horizontal variations
of temperature\ 1T:1x\ at the interface y � 0[ It comes
from the de_nition of u that 1T:1x is identical to the real
part of du:dz which expresses as

1T
1x

� −
Q
1x

sh
px
1 0

cos"y−b#p:1
ch px− cos p"y−b#

−
cos"y¦b#p:1

ch px− cos p"y¦b#1[ "8#

The corresponding isogradient lines are drawn in Fig[ 2[
When evaluated at y � 0\ the above expression reduces
to

1T
1x b0 � −

Q
x

sin
pb
1

sh
px
1

0
ch px¦ cos pb

\ "09#

showing that far from the wire\ at large absolute values
of x\ the horizontal gradient decays exponentially like

exp"−p=x=1#[ But due to the factor sin"pb:1#\ the asymp!
totic decay is less pronounced when the wire is close to
the interface "b : 0#[ The variations of 1xT=0 are plotted
in Fig[ 3 for di}erent positions of the wire[ It is shown
that the horizontal thermal gradient reaches a maximum
value at a distance x9 that is roughly equal to 0−b[
The maximum absolute value of 1xT =0 proportional to t`
"pb:1# tends to in_nity as b : 0\ its value being multiplied
by a factor 09 when b goes from 9[1Ð9[7[ At a distance
x � 1d the value of 1xT=0 for b � 9[7 is three time larger
than its value for b � 9[1[

The asymptotic behavior of 1T:1x could be quite
di}erent with a di}erent choice of thermal boundary
condition on the bottom plate[ For instance\ if the bottom
plate is insulated\ the method of images generates an
in_nite row of sources of equal strength Q\ and the prob!
lem of _nding u"z# becomes identical to that of _nding
the potential! and stream!functions due to an in_nite row
of co!rotating vortices in hydrodynamics[ The solution is
known for equidistant sources ð02Ł as well as in the gen!
eral case ð03Ł and leads to

du

dz
� −

Q
1x 0

sh pz
ch pz− cos pb1[

When the wire is located at mid!height "b � 0:1# the
horizontal thermal gradient takes a simple form

1T
1x

� −
Q
1x 0

sh 1px
ch 1px¦ cos 1py1 "00#

and tends towards a constant value as x : 2�[ There!
fore\ at some distance from the wire\ the temperature
becomes independent of the vertical coordinate y[ When
the bottom boundary is insulating\ its temperature Tb

is not controlled and cannot be used as a temperature
reference[ As in many experimental situations\ the _xed
temperature is TW the temperature of the lateral walls
that con_ned the ~uid at x � 2L:d[ Integration of equa!
tion "00# leads to

T � Tw−
Q

3px
ln 0

ch 1px¦ cos 1py
ch 1pL:d¦ cos 1py1[

In the limit L : �\ the corresponding isothermal lines
T−T"9\ 0# and the lines of isogradient are drawn in Figs
4 and 5 when the wire is located at mid!height and the
bottom plate is insulating[

3[ Thermocapillary!driven ~ow

The temperature distribution found in the previous
section creates a steady ~ow that causes deformation of
the free surface which is now located at y � H"x# �
h"x#d[ We shall assume that surface tension e}ects are
predominant when the wire is located near the free
surface[ When restricted to this con_guration\ it has been
shown in the previous section that the horizontal vari!
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Fig[ 1[ Isothermal lines T−Tb in Q:3px units for di}erent positions\ y � b\ of the wire\ in the case of an adiabatic upper surface and a
conducting lower surface[ Dark areas correspond to hot ~uid] "a# b � 9[14\ isovalues between 9 and 0[64 with step size 9[14^ "b# b � 9[4\
isovalues between 9 and 3 with step size 9[14^ "c# b � 9[64\ isovalues between 9 and 3 with step size 9[4[
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Fig[ 2[ Isogradient lines of temperature in the x!direction for di}erent positions\ y � b\ of the wire\ in the case of adiabatic!conducting
thermal boundaries conditions] "a# b � 9[14\ isovalues between −0 and 0 with step size 9[14^ b � 9[4\ isovalues between −0[1 and 0[1
with step size 9[1^ "c# b � 9[64\ isovalues between −0[4 and 0[4 with step size 9[14[
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Fig[ 3[ Absolute value of the horizontal gradient of temperature on the free surface ðnormalized to unity after division by the factor
tg"pb:1#Ł for di}erent positions of the wire] "a# b � 9[1\ tg"pb:1# � 9[214^ "b# b � 9[3\ tg"pb:1# � 9[615^ "c# b � 9[5\ tg"pb:1# � 0[265^
"d# b � 9[7\ tg"pb:1# � 2[966[

ations of the temperature evolve over distances that
exceed the thickness of ~uid at rest[ Thus\ following the
analysis of Pimputkar and Ostrach ð4Ł we have intro!
duced a distinct characteristic length scale\ L Ł d\ in the
x direction[ When the bottom boundary is conducting\ L

measures the extent of the horizontal thermal gradient[
When the bottom boundary is insulating\ L is the distance
between the wire and the side walls and it can be taken
arbitrarily large[ In expression "09# the non dimensional
x!variable is stretched by the transformation
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Fig[ 4[ Isothermal lines T"x\ y#−T"9\ 0# in Q:3px units in the case of adiabatic lower and upper surfaces\ with the wire located at mid!
height[ Isovalues between −1 and 1 with step size 9[14[

Fig[ 5[ Isogradient lines of temperature in the x!direction in the case of adiabatic lower and upper surfaces\ with the wire located at
mid!height[ Isovalues between −1 and 1 with step size 9[1[

x : A−0x

where A � d:L\ is the aspect ratio[ Therefore\ the charac!
teristic value of the horizontal velocity component is now
US � AUÞ S[ As a consequence of equation "0a#\ the
characteristic value of the vertical component of the vel!
ocity is VS � A US[ The pressure is decomposed in two
contributions

P � Pa−r`d"y−h#¦
hUSL

d1
p "01#

where Pa is the atmospheric pressure at y � h"x#[ Equa!
tions "0a#Ð"0c# become

1xu¦ 1yv � 9 "02a#

Re A1"u 1xu¦v 1yu# � −1xp−Bo A1xh¦"1yyu¦A11xxu#

"02b#

Re A3"u 1xv¦v 1yv# � −1yp¦A1"1yyv¦A11xxv# "02c#

with the Reynolds number Re\ and Bond number Bo\
de_ned as

Re �
UÞsd
n

and Bo �
r`d1

hUS

[

We shall notice that the Bond number is sometimes
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denoted as the Galileo number[ The Reynolds number
also expresses as Re � Ma:Pr and with the values of Ma
and Pr given in the previous section it comes that Re ³ 0
below the threshold for instability[ Thus\ either Stokes
approximation or thin!layer!approximation can be used
to neglect the non linear terms in equations "02b#Ð"02c#[
The boundary conditions for the pressure and velocity
_elds are

u � v � 9 at y � 9

1yu¦ 1xU � 9

1A1 1yv−p � Ca−0A2 1xxh

v � u 1xh
9 at y � h[ "03#

with the capillary number] Ca � hUS:s and where the
surface temperature U � T"x\ h# has been introduced[ It
is assumed that as A : 9\ the parameters Re A and A2:Ca
also tend to zero while Bo A remains _xed[

The pressure is found by solving 1yp � 9\ with p � 9 at
y � h\ from which it results that p"x\ y# � 9[ Then\ the
lowest order of equation "02b# yields

1yyu � Bo A 1xh "04#

with the boundary conditions

u � 9 at y � 9 and 1yu¦ 1xU � 9 at y � h[

"05#

The solution of equations "04# and "05# is

u � Bo A 1xh0
y1

1
−yh1−y 1xU[

Introducing the streamfunction c such that

u � 1yc and v � − 1xc

we _nd that

c � Bo A 1xh0
y2

5
−

y1

1
h1−

y1

1
1xU

and

v � −Bo A 1xxh0
y2

5
−

y1

1
h1¦Bo A"1xh#1 y1

1
¦

y1

1
1xxU[

Satisfaction of v � u 1xh at y � h\ provides the following
relation between h"x# and U"x#]

1x0
Bo A
01

1xh
3¦

h1

1
1xU1� 9[

Since 1xh � 1xT � 9 at x � 9 and h � 0 at x � 2�\ this
can be integrated to give

h1 � 0−
2U

Bo A
"06#

a result originally due to Pimputkar and Ostrach ð4Ł and
that is applied in the present case when U is speci_ed by
either

U � −
0
1p

ln 0
ch"px:1A#− sin"pb:1#
ch"px:1A#¦ sin"pb:1#1 "07a#

when the bottom plate is conducting\ or by

U � −
0
1p

ln 0
ch px:A¦ cos pb
ch p:A¦ cos pb 1 "07b#

when the bottom plate is adiabatic[
In the conducting case\ the streamfunction given by

c � − 1xU
y1

3 0
y
h

−01[
and the deformation are shown in Fig[ 6 for b � 2:3 and
two di}erent values of Bo A[ The height of ~uid at x � 9
is plotted in Fig[ 7 as a function of Bo A[ This picture
indicates that for Bo A× 19 the interfacial deformations
are weak[

From the experimental data of Ref[ 3 we obtain that
the variation range of Bo A is between 099 and 799[
Applying the formulas "06# and "07a# when Bo A� 099
and b � 2:3\ we found that the de~ection above the wire is
of order 09−2d[ Comparison with experiments is di.cult
since in Ref[ 3\ interfacial deformations associated to the
primary ~ow have only been observed through shad!
owgraphic images of the wire but their amplitudes have
not been measured[

4[ Buoyancy!driven ~ow

When the distance between the wire and the free sur!
face exceeds 1[4 mm\ it has been reported in Ref[ 2 that
larger values of the electrical power are required to de!
stabilize the base ~ow[ Moreover\ the instability pattern
consists in disordered propagating waves whereas for
lower values of dW the waves have a well de_ned wave!
length[ The authors argue that in that case buoyancy is
the predominant mechanism acting in the ~uid\ thus we
shall now examine what has changed in the base state
that could explain the di}erent behaviors of the system
according to the values of dW[

We shall consider in this section a ~uid with a constant
surface tension s9\ but with a density varying with the
temperature according to the law

r � r9"0−a"T−T9##

where T9 is a reference temperature\ for instance that
of the bottom plate\ and a is the coe.cient of thermal
expansion[ Thus\ equation "0c# in the governing equa!
tions for the steady velocity is replaced by

u 1xv¦v 1yv � −
0
r

1yP¦n"1xxv¦ 1yyv#−`"0−aT#

where T is the temperature distribution in the ~uid due
to the wire[ Using the same scaling as in the previous
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Fig[ 6[ Streamlines c"x\ y# and associated deformation of the free surface h"x# in the case of a thermocapillary!driven ~ow\ with the
wire located at b � 9[64\ for two values of the Bond number] "a# Bo A � 09[^ "b# Bo A � 19[ Isovalues between 9[ and −9[91 with step
size 9[991[

section and with the decomposition of the pressure\ equa!
tion "01#\ still valid\ it becomes

Re A3"u 1xv¦v 1yv# � − 1yp¦
a`Qd2

nxLUS

T

¦A1"1yyv¦A1 1xxv#[ "08#

The combination of parameters that appears in front of
T can be set equal to one by the following choice of the
characteristic value of the velocity

US �
a`Qd2

nxL
[

When considering the equation "0d# for heat transfer it

comes from this scaling that the convective terms are of
the order Ra A1\ with the Rayleigh number de_ned by

Ra �
a`Qd2

nxk
[

Under the experimental conditions of Ref[ 3\ its value
can be estimated to Ra � 29PEd

2\ where d is expressed in
millimeters[

At the leading order equation "08# reduces to

1yp � T"x\ y# "19#

and the associated boundary condition deduced from
equation "03# is] p � 9 at y � h[ It exists a non zero
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Fig[ 7[ Height of ~uid at x � 9\ vs Bo A[ The bottom plate is conducting and b � 2:3[

solution for the pressure that is substituted in equation
"02b# to give at the leading order

1yyu � Bo A 1xh¦ 1xp[ "10#

Since the velocity scale is related to buoyancy\ the Bond
number now expresses as Bo A� x:aQ[ Integration of
equation "10# when considering the general expression
for T"x\ y# will lead to intricate calculations[ Examination
of Figs 1\ 2 and 5 shows that large temperature gradients
exist around the wire and we shall now focus on the
vertical temperature pro_le at di}erent values of x[

When the bottom boundary is conducting\ it is shown
in Fig[ 8 that the vertical dependence can be approxi!
mated by a piecewise!linear pro_le in three parts[ In the
upper part "a ³ y ³ h# the temperature is assumed to be
constant and equal to the surface temperature
US"x# � T"x\ h#[ In the lower part the temperature
increases from zero and reaches a maximum value
UW"x# � T"x\ b# at the wire location[ An intermediate
region "b ³ y ³ a# allows for the linear matching between
US and UW[ As the horizontal distance from the wire
increases\ the di}erence between UX and UW reduces and
a vertical pro_le in two parts can be used "Fig[ 8"b##[

When the bottom boundary is insulating\ the exact
vertical temperature distribution and the approximated
linear pro_le are displayed for comparison in Fig[ 09 for
x � 9[1[ In this case the value of the temperature on the
bottom plate is also of some importance\ especially when
x : 9[ However\ when b is small\ the maximum gradients
are always located between the wire and the free surface[
Since we want to capture the essential feature of the

problem we still use a description in terms of two charac!
teristic temperatures US and UW which is particularly
suitable when x × 0[ Indeed\ at large values of x\ US and
UW nearly coincide and a ~at vertical pro_le can be used[

The above considerations suggest that the temperature
distribution in the ~uid can be represented by the super!
position of two terms

T"x\ y# � US"x#F"y#¦UW"x#G"y#[ "11#

The vertical temperature distributions F"y# and G"y# are
piecewise!linear pro_les and G"y# need to be speci_ed for
each type of thermal condition on the bottom boundary]

F"y# �

F

G

g

G

f

0 when a ³ y ³ h

y−b
a−b

when b ³ y ³ a

9 when 9 ³ y ³ b

G"y# �

F

G

G

j

J

G

G

f

9 when a ³ y ³ h

a−y
a−b

when b ³ y ³ a

y
b

conducting or 0 "insulating#

when 9 ³ y ³ b[

The choice of piecewise!linear pro_les has been made in
the past to describe penetrative convection[ As mentioned
by Whitehead and Chen ð04Ł this is the simplest tem!
perature distribution to be considered when heat sources
are concentrated in the vicinity of a particular depth[

Integration of equation "19# yields for the pressure
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Fig[ 8[ Vertical temperature pro_les when the bottom plate is conducting and b � 9[14[ "a# exact pro_les for x � 9[94 and x � 9[5[ "b#
Linear piecewise approximations for the same values of x[

Fig[ 09[ Vertical temperature pro_les when the bottom plate is insulating and b � 9[14[ "a# Exact pro_le for x � 9[1[ "b# Linear
piecewise approximation[

p �US"x#ðF0"y#−hŁ¦UW"x#G0"y# "12#

where F0"y# and G0"y# are integrals of respectively F"y#
and G"y# that allow for continuity of the pressure at
y � a and y � b and for the boundary condition]
p"h# � 9[ Substitution of the above expression in equa!
tion "10# yields

1yyu �"Bo A−U"x## 1xh¦F0"y# 1xUS¦G0"y# 1xUW[

After integrating twice the above equation and using
successively the stress free condition 1yu � 9 at y � h\

and the boundary condition u � 9 at y � 9\ one gets an
expression for u that has not been reported here[ Then\
satisfaction of the ~ux conservation condition

g
h

9

u dy � 9

leads to

m0 1xUS¦m1 1xUW−"Bo A−US#
h2

2
1xh � 9 "13#
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where the expressions of the two coe.cients m0 and m1

are given in the Appendix in terms of a\ b and h[ Since
h × a × b\ it can be shown that m0 and m1 are always
positive[ Moreover\ m0 and m1 that behave like h3 are
rewritten m0 � h3m¼ 0 and m1 � h3m¼ 1[ The new coe.cients m¼ 0

and m¼ 1 now express in terms of the ratios a:h and b:h that
will be approximated by their values for h � 0[ It comes
from equations "8# and "09# that 1xUW �"0¦l# 1xUS

where l is a function of the x variable\ being equal to
l"x# � 0

1
"0¦ cos pb#ðsh"px:1#Ł−1[ The quantity l diverges

close to the wire location "x : 9# and tends to zero for
large values of x[ To avoid divergence problems when
integrating equation "13# we shall consider l as a
constant\ its value being estimated at an intermediate
value of x ³ 0[ For instance\ if x � b � 0:3 we get
l � 4[14[ This leads to the relation between the defor!
mation and the surface temperature distribution

h � 00−
US

Bo A1
−m

"14#

where m � 2ðm¼ 0¦"0¦l#m¼ 1Ł is positive[ It is shown in the
Appendix that the order of magnitude of the leading
term in m¼ 0 is 9[01\ while m¼ 1 is smaller and vanishes when
a � b � 9[ Provided that U:Bo A remains small to pre!
vent h from going to in_nity\ this relation shows that
the deformation above the wire corresponds to a bump
"h × 0# contrary to what happens when thermocapillary
e}ects are dominant[

The order of magnitude of the deformation has been
estimated when the position of the wire is located at
b � 0:3 from the bottom conducting boundary[ Taking
a � 1b\ which corresponds to the vertical temperature
pro_le depicted in Fig[ 8\ yields m¼ 0 � 9[01\ m¼ 1 � 7×09−2

and consequently m � 9[4[ From the experimental data
of Ref[ 3 we obtain that the variation range of Bo A is
between 09 and 49[ Thus\ applying formula "14# when
Bo A� 14 leads to a deformation above the wire of the
order 2×09−2d\ which is slightly larger than the defor!
mation in the opposite direction due to purely ther!
mocapillary e}ects "Section 3#[ This order of magnitude
is compatible with the through!to!crest elevation di}er!
ences Kayser and Berg ð8Ł found in the range 9Ð099 mm[

5[ Buoyant!thermocapillary ~ow

When thermocapillary and buoyancy e}ects are acting
simultaneously\ the velocity scale in equation "08# is kept
equal to US � Ma k:L which is the same choice as in
Section 3[ Therefore\ the factor in front of T in this
equation is the ratio of the Rayleigh number to the Mar!
angoni number and equation "19# is now replaced by

1yp �
Ra
Ma

T"x\ y#

which is solved by assuming for T"x\ y# the same
decomposition as in equation "11# of Section 4[ Thus\
introducing the notation W � Ra:Ma\ the pressure is
deduced from expression "12# which has to be multiplied
by W in the present case[ Once p is known\ equation "10#
for u becomes

1yyu � ðBo A−WUS"x#Ł 1xh

¦WðF0"y# 1xUS¦G0"y# 1xUWŁ

that is solved with the boundary conditions

u"9# � 9\ and 1yu¦ 1xUS � 9\ at y � h[

The calculations which are very similar to those per!
formed in the two previous sections have not been
repeated here[ Applying the ~ux conservation condition
lead to the relation

h1 �
WT

W
¦00−

WT

W 1 00−
WU
Bo A1

−1m

"15#

where we have introduced the notation WT �"2:1m#[ The
parameter m has the same meaning as in the previous
section and thus WT takes di}erent values according to
the position of the wire and the thermal condition on the
bottom plate[

Considering that "W:Bo A# � a"Q:k# is a small quan!
tity\ it will be used as an expansion parameter in the
right!hand!side of equation "15#[ At the leading order\
we get the result

h1 � 0−
2U

Bo A 00−
W
WT1[ "16#

Thus\ W × WT implies that h × 0 while W ³ WT implies
that h ³ 0[ At W � WT\ the opposite actions of thermo!
capillarity and buoyancy tend to restore a ~at interface[
Moreover\ expression "16# allows to recover the results
obtained in the previous sections for the limiting cases
W � 9 ðequation "06#Ł and W Ł 0 ðequation "14#Ł[

6[ Conclusions

We have developed a simple model to describe the ~ow
induced by a hot wire located under the free surface of a
liquid[ Restriction to di}usive heat transport enabled us
to solve separately for the temperature distribution and
afterwards for the streamfunction and the deformation
of the free surface[ The temperature distribution was
found by applying the method of images while con!
sidering the ~uid at rest and a plane free surface[ Then\
the thin!layer approximation was used to derive the
streamfunction and the position of the free surface[ We
have considered two di}erent driving mechanisms for the
liquid motion[ In Section 3\ where only thermocapillary
e}ects are taken into account\ it is found that the free
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surface just above the wire de~ects to a concave surface
as it was also the case in Refs ð5Ł and ð6Ł that considered
di}erent heat sources[ In Section 4\ where buoyancy
e}ects are responsible for ~uid motion it is found that
the free surface just above the wire de~ects to a convex
surface[ A comparison ought to be made with what hap!
pens in ~uid layers heated from below when RayleighÐ
Be�nard or Be�nardÐMarangoni instabilities arise[ It is
known that above onset\ the convective cells arrange in
an hexagonal planform with the interfacial shape above
ascending ~ow being elevated or depressed whether the
driving mechanism is thermocapillarity or buoyancy[ We
have shown that this conclusion remains true even when
the initial thermal gradient has an horizontal component[
The case where thermocapillarity and buoyancy are act!
ing simultaneously is treated in Section 5[ It is shown that
the shape of the free surface depends on the ratio W of
Marangoni number to Rayleigh number[

Our results agree with previous _ndings obtained by
Kayser and Berg ð8Ł when considering the interfacial
shape of a liquid layer heated from below by a straight
wire "b � 9#[ However\ the mathematical model studied
in Ref[ ð8Ł su}ers some limitations[ In particular\ the rate
of energy supply from the line source is modeled by a
constant term in the thermal energy equation and rep!
resents a heat production uniformly distributed over the
volume of liquid[ Moreover\ the heating rate used in their
numerical calculations was very small to avoid problems
of stability and convergence[

Another limitation that prevents the use of full numeri!
cal simulations for thermally driven ~ows are the di.!
culties to resolve the small length scales\ which explains
the growing interest for theoretical models to understand
the dynamics of the ~ow in corner regions ð05Ł[ Until now\
numerical simulations of thermocapillary ~ows have been
performed for values of the Prandtl number barely
exceeding Pr � 6 in extended geometry ð06Ł and Pr � 099
in a square cavity ð05Ł[ Moreover\ a closed!form solution
for the primary ~ow is sometimes a good starting point
for analyzing its stability toward three dimensional dis!
turbances as it has been done by Vrane and Smith ð07Ł
for an annular geometry[ When solving for the dis!
turbances and after having neglected inertial and con!
vective terms\ these authors only found steady solutions[
In the set of experiments performed with a long wire ð2\
3Ł\ the primary ~ow always becomes unstable toward
traveling waves propagating in the direction of the wire[
This behavior is di}erent from what has been observed
when the ~ow is driven by a pure horizontal thermal
gradient ð08Ł[ In this latter case and depending on the
height of ~uid\ the unstable patterns are either stationary
longitudinal rolls or oblique waves propagating in a
direction nearly perpendicular to that of the thermal
gradient[ A model based on a plane ~ow approximation
has been able to reproduce these two typical behaviors
ð19Ł[ In presence of a wire\ the primary ~ow is two!

dimensional and interfacial deformations above the wire
are detected in the experiments through shadowgraphic
pictures but the magnitude of these deformations along
the x!direction has not yet been measured[ It is only
above the threshold for instability that the amplitude of
the deformations along the y!direction is known[

We suspect that the interfacial deformations associated
to the primary ~ow may in~uence the spatio!temporal
behaviors of the unstable modes[ However\ more exper!
imental results are needed\ in particular to con_rm our
predictions as to the shape of the interface above the wire
when either surface tension e}ects or buoyancy e}ects
are driving the ~ow[ The thin layer approximation is also
questionable\ being more or less satis_ed according to
the position of the wire and the thermal condition on the
bottom plate[ Since the Reynolds number is small in
the experimental conditions of Ref[ ð2Ł a forthcoming
improvement of our model will be to relax the additional
simpli_cation A : 9 and to use Stokes approximation to
derive a solution for the thermally driven ~ow[

Appendix

The coe.cients m0 and m1 result from the ~ux con!
servation condition[ They appear as the sum of three
contributions respectively proportional to "h−a#\
d � a−b and b]

m0 �
h−a

7 6"h1−a1#"h¦a#¦
d

2
"b1¦1ab¦2a1#7

¦
d

01 6hð2"h−a#"a¦b#¦d"a¦1b#Ł¦
d2

097
¦

b1

01
ð1h"h−b#¦h1−a1Ł[

The above expression reduces to m0 �"h3:7# when
a � b � 9\ which corresponds to a ~at vertical tem!
perature pro_le valid away from the wire when the bot!
tom boundary is insulating[ When the bottom boundary
is conducting and a � b � 0:3\ m0 takes the value
9[0114h3[

In the case of a conducting bottom boundary]

m1 �
a
13

"h−a#ða1¦ab¦b1Ł

¦
d

019
"3a2¦7a1b¦1ab1¦b2#

¦
b1

019
"b1¦09a1#[

When a � b � 0:3\ the above coe.cient takes the par!
ticular value m1 � 0[7×09−2[
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In the case of an insulating bottom boundary]

m1 �
0
13

"h−a#"a2¦a1b¦ab1¦b2#

¦
d

29 0a2¦1a1b¦
0
1

ab1¦
2
1

b21¦
b1

019
"5b1¦4ad#[
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